
RADemics

Generative AI and
Code Synthesis
Frameworks for
Automated
Software
Engineering and
Debugging

Jayashree Pradip Tamkhade, Ananthi.
M, Arati V. Deshpande
VISHWAKARMA INSTITUTE OF TECHNOLOGY, V.S.B.
ENGINEERING COLLEGE, VISHWAKARMA INSTITUTE
OF TECHNOLOGY

 Generative AI and Code Synthesis

Frameworks for Automated Software

Engineering and Debugging
1Jayashree Pradip Tamkhade, Assistant Professor, Electronics and Telecommunications,

Vishwakarma Institute of Technology, Kondhwa Campus, Laxminagar, Kondhwa, Pune-46.

jayashree.tamkhade@vit.edu

2Ananthi. M, Assistant Professor, Information Technology, V.S.B. Engineering College, Karur.

ananthivsb@gmail.com

3Arati V. Deshpande, Assistant Professor, Computer Engineering, Vishwakarma Institute of

Technology, Pune, arati.deshpande1@vit.edu

Abstract

The rapid advancement of Artificial Intelligence (AI) has brought transformative changes to

software engineering, particularly in the areas of debugging and code synthesis. This chapter

explores the integration of AI-driven techniques within the software development lifecycle, with

a focus on automated bug fixing, debugging complex systems, and continuous integration (CI/CD).

As software systems grow more intricate and performance-sensitive, the traditional methods of

bug detection and resolution struggle to keep pace. AI-based tools, through machine learning and

deep learning models, offer significant improvements by automating the identification of defects,

optimizing code generation, and enhancing real-time debugging processes. Key applications, such

as anomaly detection, root cause analysis, and predictive debugging, are discussed in the context

of large-scale systems, real-time environments, and high-performance applications. The chapter

also highlights the challenges in achieving accuracy, reducing false positives, and ensuring

seamless integration of AI tools into existing development workflows. By leveraging AI in

continuous deployment, this work underscores the potential for more efficient and reliable

software production, allowing for faster bug identification, reduced downtime, and improved

software quality. The evolving role of AI in debugging is examined through case studies, exploring

its real-world impact on enhancing the agility and robustness of modern software systems. As AI

continues to evolve, it is poised to redefine software engineering paradigms, making automated

debugging and code synthesis indispensable for the future of software development.

Keywords: Artificial Intelligence, Automated Bug Fixing, Debugging, Continuous Integration,

Anomaly Detection, Predictive Debugging.

Introduction

The landscape of software engineering has undergone a monumental transformation over the

past few decades [1]. As technology advances and software systems become increasingly complex,

traditional debugging methods are no longer sufficient to maintain the performance and stability

of modern applications [2]. In the past, debugging was largely a manual, error-prone process,

mailto:jayashree.tamkhade@vit.edu
mailto:ananthivsb@gmail.com
mailto:arati.deshpande1@vit.edu

where developers combed through lines of code to identify and resolve issues [3]. The emergence

of Artificial Intelligence (AI) in the software development lifecycle has revolutionized this

process, providing advanced techniques that can automate bug detection, optimize code, and

ensure system reliability with greater accuracy [4]. As modern software systems grow larger, more

dynamic, and interconnected, there is an increasing need for AI-powered tools to handle the

complexity and scale that traditional methods cannot manage effectively [5].

At the heart of AI's application in debugging is machine learning (ML), a subset of AI that

enables systems to learn from data and make predictions without explicit programming [6].

Machine learning algorithms are now being applied to identify patterns and anomalies in software

behavior, significantly enhancing the bug detection process [7]. By analyzing large datasets of

system logs, error reports, and application performance metrics, AI models can learn what

constitutes normal system behavior and flag deviations that might indicate a bug [8]. The power

of machine learning lies in its ability to uncover hidden patterns, making it possible to detect

complex, non-obvious bugs that traditional static analysis tools might miss [9]. As a result, AI

techniques such as anomaly detection and predictive debugging are becoming indispensable for

modern software development [10].

AI-based debugging is not confined to detecting bugs in isolation; it can also address issues

related to the scalability and performance of complex, distributed systems [11]. The rise of cloud-

native applications and microservices has introduced new challenges for developers, including

issues with resource management, system dependencies, and real-time data processing [12]. AI-

powered debugging tools are adept at analyzing these large-scale systems, where understanding

the interactions between various components and identifying bottlenecks can be overwhelming

[13]. By continuously monitoring the system's behavior, AI tools can predict potential failures and

proactively alert developers about underlying issues before they cause system outages or degrade

user experience [14]. This predictive capability significantly improves system reliability, reduces

downtime, and enhances overall operational efficiency [15].

In the context of continuous integration (CI) and continuous deployment (CD), AI has proven

to be an invaluable asset [16]. The CI/CD pipeline is designed to streamline software development

by automating the testing and deployment of code, ensuring faster release cycles and higher-

quality software [17]. The rapid pace of releases in CI/CD environments can introduce challenges

in debugging, as issues may not be detected until after deployment in a production environment

[18]. AI models integrated within the CI/CD pipeline can continuously monitor code during

development, detect potential bugs in real time, and even suggest fixes before the code is deployed

to production [19]. This integration allows for a proactive debugging approach, where bugs are

resolved during the development process, preventing costly post-deployment failures and

minimizing the need for manual interventions [20].

